
A Concept for Hybrid Fault Injection in Distributed Systems

Christian Trödhandl and Bettina Weiss
TU Vienna, Embedded Computing Systems Group, Vienna, Austria

{troedhandl,bw}@ecs.tuwien.ac.at

1 Introduction

Fault tolerance is an essential part in the design of dis-
tributed computer systems [2]. Thus, testing algorithms for
such systems often involves fault injection (FI) experiments
to evaluate if the specified fault hypothesis holds for the im-
plementation, i.e., faults can be seen as part of the valid
input data of a fault-tolerant system. Basically, the different
methods of FI can be grouped into three main categories
(see [5] for a comparison): Simulation-based FI [1], hard-
ware FI [6], and software FI [4].

Hardware FI tends to be less intrusive where timing is
concerned than software FI and thus preferable. It is pri-
marily used on the chip-level, however. Software FI, on the
other hand, while allowing fault injection on the algorith-
mic level, considerably affects the timing behavior of the
system and thus is not suitable for typical networked em-
bedded systems with real-time constraints.

In this paper, we present a concept of a FI framework
for distributed systems1that is based on a hybrid hardware-
software based method of fault injection. Additional to the
hybrid approach, we aim for a global fault model, where the
conditions for the injection of a specific fault may depend
on the internal states of all nodes of the tested distributed
system, similar to the system proposed with the Loki [3] ar-
chitecture. The improvement with regard to the Loki envi-
ronment will be the implementation of a hardware-assisted
FI mechanism that improves the timing properties of the FI
system.

2 Fault Injection in Distributed Systems

To address the problem of deterministic fault injection
with minimal or no influence on the timing behaviour of the
nodes under test, we envision a hybrid hardware-software
fault injection environment. In this framework we primarily
use hardware fault injection for introducing high-level pro-
cess and communication link faults: Special “FI-enabled”

1This work is part of the FIDIS-project and received support from the
Austrian BMVIT FIT-IT initiative under grant 813441 and the SPAWN-
project with support from Austrian FWF under grant P18264.

Figure 1. Fault injection cluster in wired setup

RAM, implemented within a field programmable gate array
(FPGA), will be used to inject faults into defined data or
code regions of the tested program. Those injected faults
can be triggered either by internal (e.g., some variable set
to a certain value), external (trigger message received over
the FI controller network), or by a timer event. Since FI is
done by hardware, temporally independent from the tested
system, there should be minimal or no influence on the tim-
ing of the system under test. In addition, light-weight soft-
ware fault injection is used for any fault that cannot be in-
jected directly by hardware. Most importantly, the resulting
fault injection tool will be able to handle global fault mod-
els, that is, models in which there exist some system-global
constraints on the number and/or nature of faults. More-
over, it will be able to inject both deterministic and random
faults and will allow to monitor the behavior of the affected
algorithms.

2.1 System Overview

The envisioned FI framework is a cluster of independent
FI nodes, each consisting of a target system running the
tested algorithm and a FI controller, controlling local fault
injection and providing traces of the target (see Figure 1).
This set of nodes is connected through two independent
LANs, one communication network for the tested algorithm
and the other to allow the system-wide coordination of the
local FI controllers. In addition to the wired setup, the FI
nodes also provide an external interface to wireless sensor



nodes (e.g., ZigBee). On the controller network, a central
FI server will serve as coordinator for FI experiments and
store the resulting FI logs of the local FI nodes.

2.2 Hardware

The main means of fault injection is the transparent ma-
nipulation of memory contents of the target system. This is
done by the use of a field programmable gate array (FPGA)
that is connected to the external processor bus and emulates
main memory to the CPU. This emulated RAM will feature
a second interface to the controller node. An additional net-
work controller can be integrated within the FPGA which
may also be used for injecting faults (e.g., reordering, de-
laying, or dropping of network packets). The usage of ded-
icated hardware will minimize the probe effect compared
to software-only solutions, which is of major concern when
real-time algorithms are tested.

To establish a common timebase, the FI-nodes are
equipped with a GPS-receiver that provides a periodic tim-
ing signal and can be configured to generate time-stamps
for external events.

2.3 Software

The FI software can be grouped into the following parts:
A modified development environment for the target nodes,
minimal software changes to the OS of target nodes (e.g.,
RTLinux), the local FI software on the controller nodes, and
the central server software for configuration, coordination,
and logging of the FI experiments. The development envi-
ronment for target boards will be modified to “understand”
special annotations for variables and buffers that should be
subject to FI. The linker will put those variables into special
sections of the resulting executable. On the FI nodes, the
OS will be adapted to map these sections to the “emulated”
FI-RAM. The software on the local controller nodes injects
predefined faults into the FI-RAM on the target nodes, ei-
ther at a predefined time or in response to local triggers or
trigger messages sent over the controller network. The soft-
ware on the central FI server will setup and coordinate FI
experiments and will log the results to a database.

2.4 Intended Applications

With the described FI environment, we aim to inves-
tigate two application scenarios: A setup for wired net-
works and one for wireless sensor nodes. In the wired
setup, PowerPC single-board computers are used as target
nodes, running either a special embedded RTLinux distri-
bution or VxWorks. The wireless configuration will feature
small wireless sensor nodes, based on 8-bit AVR microcon-
trollers, running for example MoteWorks or a ZigBee pro-
tocol stack. In both cases the FI controller node, based on

the same PowerPC platform as the target node in the wired
setup, will run RTLinux as operating system. Typical ap-
plications that will be examined by means of the described
FI environment are distributed algorithms (e.g., clock syn-
chronisation, consensus) with real-time constraints.

Possible types of faults, which will be produced by ma-
nipulating the memory of either the sender or receiver of
messages, are symmetric faults (fault injected into the mem-
ory of the sender), byzantine messages (selectively modify-
ing received messages originating from the “faulty” node),
message omissions, reordering (delaying messages within
the network controller). Additionally, the simulation of
temporary or permanent memory corruption is possible (ei-
ther deterministic or random), again resulting in symmetric
or byzantine faults.

3 Conclusion

When it comes to testing distributed computer systems,
fault injection is an important tool for verifying the confor-
mance to the specified fault hypothesis. By using hardware
FI the negative influence on the timing of the system can be
kept to the minimum, but since in most cases this method
is deployed on the chip or network level, the range of pos-
sible fault patterns is limited. Software FI is characterized
by a broad range of possible fault scenarios, but lacks the
good timing properties with regard to real-time applications
of hardware FI. In this paper we proposed a hybrid solution,
where special hardware (emulated RAM within a FPGA) is
used together with a distributed software FI environment to
provide for a wide area of FI models with low influence on
the timing of the system.

References

[1] G. A. Alvarez and F. Cristian. Centralized failure injection
for distributed, fault-tolerant protocol testing. Proceedings of
the 17th International Conference on Distributed Computing
Systems, pages 78–85, May 1997.

[2] J. Arlat, et al. Fault injection for dependability validation: A
methodology and some applications. IEEE Transactions on
Software Engineering, 16(2):166–182, Feb 1990.

[3] R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders.
Loki: A state-driven fault injector for distributed systems.
Proceedings International Conference on Dependable Sys-
tems and Networks, 2000. DSN 2000., pages 237–242, 2000.

[4] S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung. Testing of
fault-tolerant and real-time distributed systems via protocol
fault injection. Proceedings of Annual Symposium on Fault
Tolerant Computing, pages 404–414, Jun 1996.

[5] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection tech-
niques and tools. IEEE Computer, 30(4):75–82, 1997.

[6] J. Karlsson, et al. Integration and comparison of three phys-
ical fault injection techniques. In Predictably Dependable
Computing Systems, pages 309–329. Springer Verlag, 1995.


